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Some Motivation

Derived Category of Quasi-Coherent Sheaves

Letj : U < V be a Zariski open Subscheme of a scheme V. It is a well known (well, to
some!) theorem that the derived pullback functor j* : DI (V) — DIt (U) is a smashing
localization.
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Some Motivation

Derived Category of Quasi-Coherent Sheaves

Letj : U < V be a Zariski open Subscheme of a scheme V. It is a well known (well, to

some!) theorem that the derived pullback functor j* : DI (V) — DIt (U) is a smashing
localization.

To spell that out: We can recover DIh(11) as a localization of DI (V);

DqCOh(V)/D%COh(V) ~ choh(u]

where
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Some Motivation

Derived Category of Quasi-Coherent Sheaves

Letj : U < V be a Zariski open Subscheme of a scheme V. It is a well known (well, to

some!) theorem that the derived pullback functor j* : DI (V) — DIt (U) is a smashing
localization.

To spell that out: We can recover DIh(11) as a localization of DI (V);
DqCOh(V)/D%COh(V) ~ choh(u]

where
e Z=V—Uand D%c(’h(V) = ker(j*) are the objects supported on Z;

o the localization functor DM (V) — Dah(v)/ D%COh(V) =~ DN (U) has a right
adjoint, which is automatically fully faithful.
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Some Motivation

Derived Category of Quasi-Coherent Sheaves

Letj : U < V be a Zariski open Subscheme of a scheme V. It is a well known (well, to
some!) theorem that the derived pullback functor j* : DI (V) — DIt (U) is a smashing
localization.

To spell that out: We can recover DIh(11) as a localization of DI (V);
DqCOh(V)/D%COh(V) ~ choh(u]

where
e Z=V—Uand D%c(’h(V) = ker(j*) are the objects supported on Z;

o the localization functor DM (V) — Dah(v)/ D%COh(V) =~ DN (U) has a right
adjoint, which is automatically fully faithful.

e Since the right adjoint is fully faithful we can really view DI (U) as being a "piece”
of DIR(V)
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Some Leading Questions

How to Extend This?

The above construction gives some hope that it might be possible to do something analo-
gous in other contexts. For example,
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Some Leading Questions

How to Extend This?

The above construction gives some hope that it might be possible to do something analo-
gous in other contexts. For example,

e can we do the same for any morphism of schemes: If f : V — Xis a morphism of
schemes, is the derived pullback of f a localization? If not always, are there
conditions we can place on it to make it so?
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The above construction gives some hope that it might be possible to do something analo-
gous in other contexts. For example,

e can we do the same for any morphism of schemes: If f : V — Xis a morphism of
schemes, is the derived pullback of f a localization? If not always, are there
conditions we can place on it to make it so?

o In many other cases we have "inclusion" maps that induce maps of tensor triangular
categories. Are these induced maps also localizations?
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Some Leading Questions

How to Extend This?

The above construction gives some hope that it might be possible to do something analo-
gous in other contexts. For example,

e can we do the same for any morphism of schemes: If f : V — Xis a morphism of
schemes, is the derived pullback of f a localization? If not always, are there
conditions we can place on it to make it so?

o In many other cases we have "inclusion" maps that induce maps of tensor triangular
categories. Are these induced maps also localizations?

e For example: If H < G is subgroup of a (finite) group G, is the restriction of scalars
functor Stab(kG) — Stab(kH) (or D(kG) — D(kH)) a localization?
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Monoidal Categories

How do you multiply things???

Before we jump right into the world of tensor triangulated categories, let us start with a
recap on plain old "tensor" categories; otherwise known as Monoidal Categories. These are
morally the categories in which we can "multiply" objects in a coherent way.
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Monoidal Categories

How do you multiply things???

Before we jump right into the world of tensor triangulated categories, let us start with a
recap on plain old "tensor" categories; otherwise known as Monoidal Categories. These are
morally the categories in which we can "multiply" objects in a coherent way.
o Def (simplified): A Monoidal Category (C,®, 1) is a category C equipped with a
bifunctor ® : C x C — C and a "unit" object 1 satisfying a bunch of coherence axioms:
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Monoidal Categories

How do you multiply things???

Before we jump right into the world of tensor triangulated categories, let us start with a
recap on plain old "tensor" categories; otherwise known as Monoidal Categories. These
are morally the categories in which we can "multiply" objects in a coherent way.
o Def (simplified): A Monoidal Category (C, ®, 1) is a category C equipped with a
bifunctor (which we will refer to as multiplication) ® : C x C — C and a "unit" object
1 satisfying a bunch of coherence axioms:

o Multiplication should be associative: (a @ b) ®c=a® (b®c)
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Monoidal Categories

How do you multiply things???

Before we jump right into the world of tensor triangulated categories, let us start with a
recap on plain old "tensor" categories; otherwise known as Monoidal Categories. These
are morally the categories in which we can "multiply" objects in a coherent way.

o Def (simplified): A Monoidal Category (C,®, 1) is a category C equipped with a
bifunctor (which we will refer to as multiplication) ® : C x C — C and a "unit" object
1 satisfying a bunch of coherence axioms:

e Multiplication should be associative: (a®@b) ® c = a® (b®c)
e Multiplication by the unit does nothing: 1 ® a =a=a® 1
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Symmetric Monoidal Categories

Some Warnings

Warnings: This definition given above is extremely imprecise. For a more thorough
definition of monoidal categories you can view the resources being shared. Let us just
quickly comment a few things
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Symmetric Monoidal Categories

Some Warnings

Warnings: This definition given above is extremely imprecise. For a more thorough
definition of monoidal categories you can view the resources being shared. Let us just
quickly comment a few things:

e The associative isomorphisms above are really a given choice of natural
isomorphisms

o There are two distinct maps in the unital isomorphisms (one for tensoring on the left
and one for on the right)

e We have not made the claim yet thata @ b = b ® a yet.
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Symmetric Monoidal Categories

Definition and Some Examples

Def: A Symmetric Monoidal Category is a monoidal category with a choice of braiding
T:a®b =b® athat plays nice with the associativity isomorphisms and the two choices
of unital isomorphisms.
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Symmetric Monoidal Categories

Definition and Some Examples

Def: A Symmetric Monoidal Category is a monoidal category with a choice of braiding
T:a®b =b® athat plays nice with the associativity isomorphisms and the two choices
of unital isomorphisms.

Let us look at some examples:

° (Ab, KRz, Z)

e More generally for R a commutative ring we have (R —Mod, ®g, R)
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Symmetric Monoidal Categories

Definition and Some Examples

Def: A Symmetric Monoidal Category is a monoidal category with a choice of braiding
T:a®b =b® athat plays nice with the associativity isomorphisms and the two choices
of unital isomorphisms.

Let us look at some examples:

e (Ab,®z,Z)

o More generally for R a commutative ring we have (R — Mod, ®g, R)

o Let G be a finite group. Then (kG —Mod, ®y, k)

o More generally H be a Hopf Algebra over a field k. Then (H — Mod, ®x, k)
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Symmetric Monoidal Functors and their Adjoints

(Symmetric) Monoidal Functors

A (lax) monoidal functor F : (C, ®¢, 1¢) — (D, ®p, Lp) is a functor equipped with a
morphism

¢o: 1p — F(L¢)
and a natural transformation

®ap : Fla) ®p F(b) — Fla®c b)
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Symmetric Monoidal Functors and their Adjoints

(Symmetric) Monoidal Functors

A (lax) monoidal functor F : (C, ®¢, 1¢) — (D, ®p, Lp) is a functor equipped with a
morphism
@0 : 1p — F(Lc)
and a natural transformation
@ap i Fla) ®@p F(b) — Fla®c b)

A strong monoidal functor is a lax monoidal functor where the two maps defined above
are isomorphisms.
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Symmetric Monoidal Functors and their Adjoints

(Symmetric) Monoidal Functors

A (lax) monoidal functor F: (C, ®¢, 1¢) — (D, ®p, 1p) is a functor equipped with a
morphism

@0 : 1p — F(Ic)
and a natural transformation

@ap : Fla) ®p F(b) — Fla®¢ b)

A strong monoidal functor is a lax monoidal functor where the two maps defined above
are isomorphisms.

A (strong or lax) symmetric monoidal functor is a (strong or lax) monoidal functor such
the following diagram commutes for all a, b:
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Symmetric Monoidal Functors and their Adjoints

(Symmetric) Monoidal Functors

A (lax) monoidal functor F : (C, ®¢, 1¢) — (D, ®p, Lp) is a functor equipped with a
morphism

@0 : 1p — F(L¢)
and a natural transformation

®ap : Fla) ®p F(b) = Fla®¢ b)

A strong monoidal functor is a lax monoidal functor where the two maps defined above
are isomorphisms.

A (strong or lax) symmetric monoidal functor is a (strong or lax) monoidal functor such
the following diagram commutes for all a, b:

Fla) @ F(b) ——2%* ___, Fa®b)

TF(a)/F(bw kF(Ta,b)

F(b) @ Fla) ——5—— F(b®a)

© David Rubinstein 15



Symmetric Monoidal Functors and their Adjoints

(Symmetric) Monoidal Adjoints

Let F: C — D be a strong monoidal functor and suppose F has a right adjoint G.
FACT: G is a lax monoidal functor. Note that we therefore have the following two maps:
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Symmetric Monoidal Functors and their Adjoints

(Symmetric) Monoidal Adjoints

Let F: C — D be a strong monoidal functor and suppose F has a right adjoint G.
FACT: G is a lax monoidal functor. Note that we therefore have the following two maps:

1¢c — G(1p)

and
G(1p) ®c G(1p) — G(lp ®p 1p) = G(1p)

© David Rubinstein



Symmetric Monoidal Functors and their Adjoints

(Symmetric) Monoidal Adjoints

Let F: C — D be a strong monoidal functor and suppose F has a right adjoint G.
FACT: G is a lax monoidal functor. Note that we therefore have the following two maps:

1¢ — G(1p)

and
G(1p) ®c G(1p) — G(lp ®p 1p) = G(1p)

That is, there is a sort of "multiplication map" for G(1p). Let us formalize that.
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Ring Objects

Definition and Examples

Given a Symmetric Monoidal Category (C, ®, 1) we can talk about those objects A that
admit a multiplication structure.
Def: A ring object in a Symmetric Monoidal Category is
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Ring Objects

Definition

Given a Symmetric Monoidal Category (C, ®, 1) we can talk about those objects A that
admit a multiplication structure.

Def: A ring object in a Symmetric Monoidal Category is an object A with maps:
e 1:A®A — A (called the multiplication map)
e 1n:1 — A (called the unit map)

such that the following diagrams commutes
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Ring Objects

Definition

Given a Symmetric Monoidal Category (C, ®, 1) we can talk about those objects A that
admit a multiplication structure.

Def: A ring object in a Symmetric Monoidal Category is an object A with maps:
o 1:A®A — A (called the multiplication map)
e 1 :1 — A (called the unit map)

such that the following diagrams commutes

AQARA —* L AgA AL — " s AA " 1A
AQA ——— A A
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Ring Objects

Definition

Given a Symmetric Monoidal Category (C, ®, 1) we can talk about those objects A that
admit a multiplication structure.
Def: A ring object in a Symmetric Monoidal Category is an object A with maps:

o 1:A®A — A (called the multiplication map)
e 1n:1 — A (called the unit map)

such that the following diagrams commutes

AARA —* L AgA A1 — s AA " 1gA
1w H 18
ABA ——— A A

We say the ring A is commutative if the multiplication map commutes with the braiding:
thatisif ot =p
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Examples of Ring Objects

In the Categories we Previously Mentioned

This is nothing more than the categorified version of a ring. To see that, consider:

e Ring objects in (Ab, ®z, Z) are nothing more than...
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Examples of Ring Objects

In the Categories we Previously Mentioned

This is nothing more than the categorified version of a ring. To see that, consider:

e Ring objects in (Ab, ®z, Z) are nothing more than Rings!
e More generally ring objects in (R — Mod, ®g, R) are....
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Examples of Ring Objects

In the Categories we Previously Mentioned

This is nothing more than the categorified version of a ring. To see that, consider:

e Ring objects in (Ab, ®z, Z) are nothing more than Rings!
e More generally ring objects in (R — Mod, ®g, R) are R-algebras!

e For G finite Group, ring objects in (kG — Mod, ®x, k) are k-algebras with actions of G
as algebra automorphisms.
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Examples of Ring Objects

In the Categories we Previously Mentioned

This is nothing more than the categorified version of a ring. To see that, consider:

Ring objects in (Ab, ®7, Z) are nothing more than Rings!
More generally ring objects in (R — Mod, ®g, R) are R-algebras!

For G finite Group, ring objects in (kG — Mod, ®y, k) are k-algebras with actions of G
as algebra automorphisms.

Recall a right adjoint G of any strong monoidal functor F is a lax monoidal functor.
Then we saw that in fact G(1) is a ring object.

© David Rubinstein
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Modules over Ring objects

Given me a ring and I'll give you a Module

Given a ring object we can talk about modules over the ring.

Def: Let A be a (commutative) ring object in a symetric monoidal category (C,®,1). A
left A-module M is an object of C equipped with a map p: A ® M — M such that the
following two diagrams commute:
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Modules over Ring objects

Given me a ring and I'll give you a Module

Given a ring object we can talk about modules over the ring.

Def: Let A be a (commutative) ring object in a symetric monoidal category (C, ®, 1). A
left A-module M is an object of C equipped with a map p: A ® M — M such that the
following two diagrams commute:

AAOM —2° L AgM 1eM —" L agM
nel1 P P
Im
AOM — v M M

P
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Modules over Ring objects

Given me a ring and I'll give you a Module

Given a ring object we can talk about modules over the ring.

Def: Let A be a (commutative) ring object in a symetric monoidal category (C, ®, 1). A
left A-module M is an object of C equipped with a map p: A ® M — M such that the
following two diagrams commute:

AAOM —2° L AgM 1eM —"' , agM
nel1 P P
Im
AOM —— + M M

P

Remark: These axioms are just souped up versions of the usual two axioms that
a.(b.m)=(ab).m and 1.m=m we are familiar with for Modules.
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Modules over Ring objects

Category of Modules

Note that every object X € C gives rise to a "free A-module" A ® X whose structure map is
given by the multiplication on A.

© David Rubinstein 30



Modules over Ring objects

Category of Modules

Note that every object X € C gives rise to a "free A-module" A ® X whose structure map is
given by the multiplication on A.
Def: The category of A modules is denoted A — Mod¢ and consists of

(Objects) A-modules

(Morphisms) A-linear maps. That is a map f: M — N that commutes with the action
of A on M and N.
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Modules over Ring objects

Category of Modules

Note that every object X € C gives rise to a "free A-module" A ® X whose structure map is
given by the multiplication on A.
Def: The category of A modules is denoted A — Mod¢ and consists of

(Objects) A-modules

(Morphisms) A-linear maps. That is a map f: M — N that commutes with the action
of A on M and N.

Note we then have an "extension of scalars functor"
Fa:=A®—:C —> A—Mod¢

which has a right adjoint
Ua:A—Mode —C

that forgets the action of A.
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Modules over Ring objects

Category of Modules

Note that every object X € C gives rise to a "free A-module" A ® X whose structure map is
given by the multiplication on A.
Def: The category of A modules is denoted A —Mod and consists of

(Objects) A-modules

(Morphisms) A-linear maps. That is a map f: M — N that commutes with the action
of A on M and N.

Note we then have an "extension of scalars functor"
FA=A®—:C — A—Mod¢

which has a right adjoint
Ua : A—Mode — C
that forgets the action of A.
Remark: We typically call the essential image of F the category of "Free Modules" and
denote it by A — Freec. The adjunction above then of course restricts to:

C
Fa Ua
Ua FA
A —Freegc —  A—Mod¢
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Realization of Ring Objects

Modules from an Adjunction

be an adjoint pair between (Symmetric) Monoidal Categories. Recall that if F is strong
Monoidal, then G is lax monoidal, turning A := G(1) into a ring object; so we can consider
the category of A-Modules in C.
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Realization of Ring Objects
Modules from an Adjunction

J

D

be an adjoint pair between (Symmetric) Monoidal Categories. Recall that if F is strong
Monoidal, then G is lax monoidal, turning A := G(1) into a ring object; so we can consider
the category of A-Modules in C.

There exist unique functors L and K making the following diagram commute:

C
Fa Ua
ur T|[€ Fa
A—Freec """ D g A—Modg
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Bring on the Triangulation

Tensor Triangulated Categories

Def: A Tensor Triangulated Category is a triangulated category 7 equiped with a
triangulated bi-functor — ® — : 7 x 7 — 7T and unit object that turns 7 into a symmetric
monoidal category. We will often call a tensor triangulated category a tt. category and will
still denote it by (7, ®, 1)
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Bring on the Triangulation

Tensor Triangulated Categories

Def: A Tensor Triangulated Category is a triangulated category 7 equiped with a
triangulated bi-functor —® — : 7 x 7 — 7T and unit object that turns 7 into a symmetric
monoidal category.We will often call a tensor triangulated category a tt. category and will
still denote it by (7, ®, 1)

Let us consider some examples (compare these to the examples of (symmetric) monoidal
categories):

1. (D(R), ®%,R). The derived category of a commutative ring R with derived tensor
product.
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Bring on the Triangulation

Tensor Triangulated Categories

Def: A Tensor Triangulated Category is a triangulated category 7 equiped with a
triangulated bi-functor —® —: 7 x 7 — T and unit object that turns 7 into a symmetric
monoidal category.We will often call a tensor triangulated category a tt. category and will
still denote it by (7, ®, 1)
Let us consider some examples (compare these to the examples of (symmetric) monoidal
categories):

1. (D(R), ®I§, R). The derived category of a commutative ring R with derived tensor

product.

2. (Stab(kG), @i, k). The "stable module" category for the group ring kG.
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Bring on the Triangulation

Tensor Triangulated Categories

Def: A Tensor Triangulated Category is a triangulated category 7 equiped with a
triangulated bi-functor —® —: 7 x 7 — T and unit object that turns 7 into a symmetric
monoidal category.We will often call a tensor triangulated category a tt. category and will
still denote it by (7, ®, 1)

Let us consider some examples (compare these to the examples of (symmetric) monoidal
categories):

1. (D(R), ®]§, R). The derived category of a commutative ring R with derived tensor
product.

2. (Stab(kG), ®x, k). The "stable module" category for the group ring kG.
3. (SH,/\,S). The "stable homotopy" category with smash product
4. (SH(G), A\, S). The G-equivarient stable homotopy category for a finite group G.
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Bring on the Triangulation

Tensor Triangulated Categories

Def: A Tensor Triangulated Category is a triangulated category 7 equiped with a
triangulated bi-functor —® — : 7 x 7 — 7T and unit object that turns 7 into a symmetric
monoidal category.We will often call a tensor triangulated category a tt. category and will
still denote it by (7, ®, 1)
Let us consider some examples (compare these to the examples of (symmetric) monoidal
categories):

1. (D(R), ®]§, R). The derived category of a commutative ring R with derived tensor

product.

. (Stab(kG), @, k). The "stable module" category for the group ring kG.
. (SH,/\,S). The "stable homotopy" category with smash product
. (SH(G), /A, S). The G-equivarient stable homotopy category for a finite group G.

(S B N CS I S

. (DM€t (S, R), ®,R). The derived category of (étale) motives over base scheme S
with coefficients in a commutative ring R.
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Rings in TT Categories

Some leading questions/examples

Question: Let R be a commutative ring and let A be an R-algebra: Is A[0] a ring object in
D(R)?

© David Rubinstein 41



Rings in TT Categories

Some leading questions/examples

Question: Let R be a commutative ring and let A be an R-algebra: Is A[0] a ring object in
D(R)?

Answer: Sadly, not always. This is because (A QL A)[0] % A[0] ®L A[0] unless A is flat. So
a flat R-Algebra A remains a ring object in D(R).
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Rings in TT Categories

Some leading questions/examples

Question 1: Let R be a commutative ring and let A be an R-algebra: Is A[0] a ring object in
D(R)?

Answer 1: Sadly, not always. This is because (A @ A)[0] # A[0] ®" A[0] unless A is flat.
So a flat R-Algebra A remains a ring object in D(R).

Question 2: Let A be a ring object in a tt category 7, and consider again the category of
A-modules A —Mod7. Is A — Mod7 triangulated?

© David Rubinstein 43



Rings in TT Categories

Some leading questions/examples

Question 1: Let R be a commutative ring and let A be an R-algebra: Is A[0] a ring object in
D(R)?

Answer 1: Sadly, not always. This is because (A ®F A)[0] # A[0] ®T A[0] unless A is flat.
So a flat R-Algebra A remains a ring object in D(R).

Question 2: Let A be a ring object in a tt category 7, and consider again the category of
A-modules A —Mod7. Is A — Mod7 triangulated?
Answer 2: Sadly... not always.
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Separable Rings

Separability

Def: Let A be a ring object in a tt category 7. We say that A is separable if the
multiplication map 1: A ® A — A admits a section as a two sided A-module.
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Separable Rings

Separability

Def: Let A be a ring object in a tt category 7. We say that A is separable if the
multiplication map 1 : A ® A — A admits a section as a two sided A-module. That is. a
morphism ¢ : A — A ® A such that uo = ida and that the following diagram commutes:
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Separable Rings

Separability

Def: Let A be a ring object in a tt category 7. We say that A is separable if the
multiplication map n: A ® A — A admits a section as a two sided A-module. That is. a
morphism ¢ : A — A ® A such that uo = id and that the following diagram commutes:

ARQA

=

AQRARA AQARA

D

ARA
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Separable Rings

Separability

Def: Let A be a ring object in a tt category 7. We say that A is separable if the
multiplication map 1u: A ® A — A admits a section as a two sided A-module. That is. a
morphism o : A — A ® A such that uo = ida and that the following diagram commutes:

ARQA

=

AQRARA ARARA

o e

ARQA

Theorem:

Let A be a separable ring in a tt category 7. Then the category A — Mod7 is canonically
triangulated such that the extension of scalars functor

Fa:T — A—Mods

is a tt functor.
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Examples: Take 1

Smashing Localizations

Before diving into some concrete examples, let us note a particular case of this theory.
Let 7 be a tt category and consider a smashing localization L : 7 — T
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Examples: Take 1

Smashing Localizations

Before diving into some concrete examples, let us note a particular case of this theory.
Let 7 be a tt category and consider a smashing localization L : 7 — 7 Recall: A smashing
localization is a localization L such that

1. L admits a fully faithful right adjoint (allowing us to think of the localization as a
subcategory: the essential image of "L-local objects")
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Examples: Take 1

Smashing Localizations

Before diving into some concrete examples, let us note a particular case of this theory.
Let 7 be a tt category and consider a smashing localization L : 7 — 7. Recall: A
smashing localization is a localization L such that

1. L admits a fully faithful right adjoint (allowing us to think of the localization as a
subcategory: the essential image of "L-local objects")

2. For any object t € 7, we have a canonical isomorphism L(t) = L(1) ®t
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Examples: Take 1

Smashing Localizations

Before diving into some concrete examples, let us note a particular case of this theory.
Let 7 be a tt category and consider a smashing localization L : 7 — 7. Recall: A
smashing localization is a localization L such that

1. L admits a fully faithful right adjoint (allowing us to think of the localization as a
subcategory: the essential image of "L-local objects")

2. For any object t € 7, we have a canonical isomorphism L(t) = L(1) ®t

Then let us let A := L(1). One then shows that A ® A = A; this allows us to view A as a
separable algebra (by taking o to be the inverse of the isomorphism.)
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Examples: Take 1

Smashing Localizations

Before diving into some concrete examples, let us note a particular case of this theory.
Let 7 be a tt category and consider a smashing localization L : 7 — 7. Recall: A
smashing localization is a localization L such that

1. L admits a fully faithful right adjoint (allowing us to think of the localization as a
subcategory: the essential image of "L-local objects")

2. For any object t € 7, we have a canonical isomorphism L(t) = L(1) ®t

Then let us let A := L(1). One then shows that A ® A = A; this allows us to view A as a
separable algebra (by taking o to be the inverse of the isomorphism.)
In this case then, the category A — Mod- is just the category of L-local objects.

© David Rubinstein 58]



Examples: Take 1

Smashing Localizations

Before diving into some concrete examples, let us note a particular case of this theory.
Let 7 be a tt category and consider a smashing localization L : 7 — 7. Recall: A
smashing localization is a localization L such that

1. L admits a fully faithful right adjoint (allowing us to think of the localization as a
subcategory: the essential image of "L-local objects")
2. For any object t € 7, we have a canonical isomorphism L(t) = L(1) ®t

Then let us let A := L(1). One then shows that A ® A = A; this allows us to view A as a
separable algebra (by taking o to be the inverse of the isomorphism.
In this case then, the category A — Modr is just the category of L-local objects.

Back to OG example
Remark: The case of the open immersion of schemes U — V can thus be stated as follows:

Letting A = j.(Oy) we have that A-Mod = j.j*-Local objects = D9c°h(U1).
That is, we can view D9¢°"(U) as being a sort of Module category inside D9¢°" (V)
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Finite Etale Extensions

The Main Construction

G
Let C &— - D be an adjunction of tt categories.
F
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Finite Etale Extensions

The Main Construction

Let C =——— D be an adjunction of tt categories. Then recall that A := G(1p)isa
F

ring object and that we had the following picture

C
Fa Ua
ur T|[€ Fa
A—Freec """ D g A—Modg
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Finite Etale Extensions

The Main Construction

m ‘

Let C =——— D be an adjunction of tt categories. Then recall that A := G(1p) isa
F

ring object and that we had the following picture

Main Definition:

Let F and A be as above. We say F is a finite étale extension if A is a (compact) separable
ring object such that

o the functor D % A — Modc is an tt equivalence of tt categories

o under which the functor F becomes isomorphic to the extension of scalars functor Fa
and

e G becomes isomorphic to the forgetful functor Ux
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Etale Algebras Galore

The Reason for the Name

Recall that if A is a flat R-Algebra then A[0] remains a ring object in D(R).
Def: An étale R-Algebra S is a separable, flat R-algebra of finite presentation.
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Etale Algebras Galore

The Reason for the Name

Recall that if A is a flat R-Algebra then A[0] remains a ring object in D(R).
Def: An étale R-Algebra S is a separable, flat R-algebra of finite presentation.
Thrm 1: Let S be an étale R-algebra and consider the extension of scalars functor:

F=S[0]®k—
D(R) =R T, py(s)

Then F is a finite étale extension. That is the category D(S) is canonically equivalent to the
category of S-Modules inside D(R).
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Etale Algebras Galore

The Reason for the Name

Recall that if A is a flat R-Algebra then A[0] remains a ring object in D(R).
Def: An étale R-Algebra S is a separable, flat R-algebra of finite presentation.
Thrm 1: Let S be an étale R-algebra and consider the extension of scalars functor:

F:=S[0]®k—
D(R) =22k, s

Then F is a finite étale extension. That is the category D(S) is canonically equivalent to the
category of S-Modules inside D(R).

Thrm 2

Thrm 2: Let f : V — X' be a seperated étale morphism of quasi-compact, quasi-seperated
schemes. Then the functor
f*: DN (X) — DIOR(V)

is a finite étale extension. That is, we have an equivalence of categories
DA4coR (V) = Rf, (1) — Modpgcon (x)
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Etale Extensions in Equivarient contexts

Modular Representation Theory

Let G be a finite group and consider the tt category Stab(kG). Let H < G be a subgroup
and recall that we get the following adjunction:
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Etale Extensions in Equivarient contexts

Modular Representation Theory

Let G be a finite group and consider the tt category Stab(kG). Let H < G be a subgroup
and recall that we get the following adjunction:

Stab(kG)

Res ﬁHIndﬁ:kG@

Stab(kH)
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Etale Extensions in Equivarient contexts

Modular Representation Theory

Let G be a finite group and consider the tt category Stab(kG). Let H < G be a subgroup
and recall that we get the following adjunction:

Stab(kG)

ResﬁHIndgszx

Stab(kH)

Thrm: Let Aﬁ = Indﬁ (1) = k(G/H). The Restriction to a subgroup functor is a finite
étale extension. That is, the category Stab(kH) is canonically isomorphic to the category of
A-Modules in Stab(kG) under which the restriction functor is isomorphic to the extension
of scalars functor Fa .
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Etale Extensions in Equivarient contexts

Modular Representation Theory

Let G be a finite group and consider the tt category Stab(kG). Let H < G be a subgroup
and recall that we get the following adjunction:

Stab(kG)
Res§ | |Ind§:=kGe—

Stab(kH)

Thrm: Let AS = Indﬁ (1) = k(G/H). The Restriction to a subgroup functor is a finite
étale extension. That is, the category Stab(kH) is canonically isomorphic to the category of
A-Modules in Stab(kG) under which the restriction functor is isomorphic to the extension
of scalars functor Fa.

Remark: One can then phrase questions about extending representations of H to G in
terms of "descent" of the ring Aﬁ. I will not mention much more about this, but will leave
some references for you to look at. The big takeaway is that this ring A satisfies descent
iff [G : H] is invertible in k.
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Etale Extensions in Equivarient contexts

Equivariant Homotopy Theory

Let G be a compact Lie Group (ex; a finite group) and consider the tt category SH(G). Let
H < G be a closed subgroup- we get the following adjunction:
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Etale Extensions in Equivarient contexts

Equivariant Homotopy Theory

Let G be a compact Lie Group (eX; a finite group) and consider the tt category SH(G). Let
H < G be a closed subgroup- we get the following adjunction:

SH(G)
\
1ndﬁ:G+AH—}esﬁ CoInd§:=Fy (G+,—)

I
SH(H)
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Etale Extensions in Equivarient contexts

Equivariant Homotopy Theory

Let G be a compact Lie Group (ex; a finite group) and consider the tt category SH(G). Let
H < G be a closed subgroup- we get the following adjunction:

SH(G)
\
Indﬁ:GJrAH}esﬁ Colnd§:=Fy (G4,—)
il

SH(H)

Note that when [G : H] < oo there is an isomorphism of functors between
Ind§ = Colnd§.
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Etale Extensions in Equivarient contexts

Equivariant Homotopy Theory

Let G be a compact Lie Group (ex; a finite group) and consider the tt category SH(G). Let
H < G be a closed subgroup- we get the following adjunction:

SH(G)
|
Indﬁ:GJr/\H}esﬁ CoInd§:=Fy (G+,—)

I
SH(H)

Note that when [G : H] < oo there is an isomorphism of functors between
Indf} = Colnd§.

Theorem:

Let H < G be a closed subgroup of finite index. Let
A=Fu(Gy, Isnry) = G An Ispn) = Y_"°(G/H)+ Then restriction to H is a finite
étale extension; that is the category of A-Modules in SH(G) is equivalent to SH(H).
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Further Directions/Questions

Some Topics to Read if Interested

There are many directions one can take with this:

Read about what the extension of scalars functor does on Spectra
Classify all separable algebras in a given tt category
Read about descent for separable algebras

See how far you can push the analogy of a ring: going up theorem, "residue fields",
Galois extensions, etc

Reading about the behavior of finite étale morphisms on the "big" categories
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