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Some Motivation

Derived Category of Quasi-Coherent Sheaves

Let j : U ↪→ V be a Zariski open Subscheme of a scheme V . It is a well known (well, to
some!) theorem that the derived pullback functor j∗ : Dqcoh(V) → Dqcoh(U) is a smashing
localization.

To spell that out: We can recover Dqcoh(U) as a localization of Dqcoh(V);

Dqcoh(V)/Dqcoh
Z (V) ∼= Dqcoh(U)

where
• Z = V −U and Dqcoh

Z (V) = ker(j∗) are the objects supported on Z;

• the localization functor Dqcoh(V) → Dqcoh(V)/Dqcoh
Z (V) ∼= Dqcoh(U) has a right

adjoint, which is automatically fully faithful.

• Since the right adjoint is fully faithful we can really view Dqcoh(U) as being a "piece"
of Dqcoh(V)
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Some Leading Questions

How to Extend This?

The above construction gives some hope that it might be possible to do something analo-
gous in other contexts. For example,

• can we do the same for any morphism of schemes: If f : V → X is a morphism of
schemes, is the derived pullback of f a localization? If not always, are there
conditions we can place on it to make it so?

• In many other cases we have "inclusion" maps that induce maps of tensor triangular
categories. Are these induced maps also localizations?

• For example: If H ↪→ G is subgroup of a (finite) group G, is the restriction of scalars
functor Stab(kG) → Stab(kH) (or D(kG) → D(kH)) a localization?
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Monoidal Categories

How do you multiply things???

Before we jump right into the world of tensor triangulated categories, let us start with a
recap on plain old "tensor" categories; otherwise known as Monoidal Categories. These are
morally the categories in which we can "multiply" objects in a coherent way.

• Def (simplified): A Monoidal Category (C,⊗,1) is a category C equipped with a
bifunctor ⊗ : C × C → C and a "unit" object 1 satisfying a bunch of coherence axioms:
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• Def (simplified): A Monoidal Category (C,⊗,1) is a category C equipped with a

bifunctor (which we will refer to as multiplication) ⊗ : C × C → C and a "unit" object
1 satisfying a bunch of coherence axioms:

• Multiplication should be associative: (a⊗ b)⊗ c ∼= a⊗ (b⊗ c)

© David Rubinstein 5



Monoidal Categories

How do you multiply things???

Before we jump right into the world of tensor triangulated categories, let us start with a
recap on plain old "tensor" categories; otherwise known as Monoidal Categories. These
are morally the categories in which we can "multiply" objects in a coherent way.
• Def (simplified): A Monoidal Category (C,⊗,1) is a category C equipped with a

bifunctor (which we will refer to as multiplication) ⊗ : C × C → C and a "unit" object
1 satisfying a bunch of coherence axioms:

• Multiplication should be associative: (a⊗ b)⊗ c ∼= a⊗ (b⊗ c)
• Multiplication by the unit does nothing: 1⊗ a ∼= a ∼= a⊗ 1
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Symmetric Monoidal Categories

Some Warnings

Warnings: This definition given above is extremely imprecise. For a more thorough
definition of monoidal categories you can view the resources being shared. Let us just
quickly comment a few things
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Symmetric Monoidal Categories

Some Warnings

Warnings: This definition given above is extremely imprecise. For a more thorough
definition of monoidal categories you can view the resources being shared. Let us just
quickly comment a few things:
• The associative isomorphisms above are really a given choice of natural

isomorphisms

• There are two distinct maps in the unital isomorphisms (one for tensoring on the left
and one for on the right)

• We have not made the claim yet that a⊗ b ∼= b⊗ a yet.
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Symmetric Monoidal Categories

Definition and Some Examples

Def: A Symmetric Monoidal Category is a monoidal category with a choice of braiding
τ : a⊗ b ∼= b⊗ a that plays nice with the associativity isomorphisms and the two choices
of unital isomorphisms.
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Symmetric Monoidal Categories

Definition and Some Examples

Def: A Symmetric Monoidal Category is a monoidal category with a choice of braiding
τ : a⊗ b ∼= b⊗ a that plays nice with the associativity isomorphisms and the two choices
of unital isomorphisms.
Let us look at some examples:
• (Ab,⊗Z,Z)
• More generally for R a commutative ring we have (R−Mod,⊗R,R)
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Symmetric Monoidal Categories

Definition and Some Examples

Def: A Symmetric Monoidal Category is a monoidal category with a choice of braiding
τ : a⊗ b ∼= b⊗ a that plays nice with the associativity isomorphisms and the two choices
of unital isomorphisms.
Let us look at some examples:
• (Ab,⊗Z,Z)
• More generally for R a commutative ring we have (R−Mod,⊗R,R)

• Let G be a finite group. Then (kG−Mod,⊗k,k)

• More generally H be a Hopf Algebra over a field k. Then (H−Mod,⊗k,k)
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Symmetric Monoidal Functors and their Adjoints

(Symmetric) Monoidal Functors

A (lax) monoidal functor F : (C,⊗C ,1C) → (D,⊗D ,1D) is a functor equipped with a
morphism

ϕ0 : 1D → F(1C)

and a natural transformation

ϕa,b : F(a)⊗D F(b) → F(a⊗C b)
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(Symmetric) Monoidal Functors

A (lax) monoidal functor F : (C,⊗C ,1C) → (D,⊗D ,1D) is a functor equipped with a
morphism

ϕ0 : 1D → F(1C)

and a natural transformation

ϕa,b : F(a)⊗D F(b) → F(a⊗C b)
A strong monoidal functor is a lax monoidal functor where the two maps defined above
are isomorphisms.
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(Symmetric) Monoidal Functors

A (lax) monoidal functor F : (C,⊗C ,1C) → (D,⊗D ,1D) is a functor equipped with a
morphism

ϕ0 : 1D → F(1C)

and a natural transformation

ϕa,b : F(a)⊗D F(b) → F(a⊗C b)
A strong monoidal functor is a lax monoidal functor where the two maps defined above
are isomorphisms.
A (strong or lax) symmetric monoidal functor is a (strong or lax) monoidal functor such
the following diagram commutes for all a, b:

F(a)⊗ F(b) F(a⊗ b)

F(b)⊗ F(a) F(b⊗ a)

ϕa,b

τF(a),F(b)

ϕb,a

F(τa,b)
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Symmetric Monoidal Functors and their Adjoints

(Symmetric) Monoidal Adjoints

Let F : C → D be a strong monoidal functor and suppose F has a right adjoint G.
FACT: G is a lax monoidal functor. Note that we therefore have the following two maps:
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(Symmetric) Monoidal Adjoints

Let F : C → D be a strong monoidal functor and suppose F has a right adjoint G.
FACT: G is a lax monoidal functor. Note that we therefore have the following two maps:

1C → G(1D)

and
G(1D)⊗C G(1D) → G(1D ⊗D 1D) ∼= G(1D)
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Symmetric Monoidal Functors and their Adjoints

(Symmetric) Monoidal Adjoints

Let F : C → D be a strong monoidal functor and suppose F has a right adjoint G.
FACT: G is a lax monoidal functor. Note that we therefore have the following two maps:

1C → G(1D)

and
G(1D)⊗C G(1D) → G(1D ⊗D 1D) ∼= G(1D)

That is, there is a sort of "multiplication map" for G(1D). Let us formalize that.
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Ring Objects

Definition and Examples

Given a Symmetric Monoidal Category (C,⊗,1) we can talk about those objects A that
admit a multiplication structure.
Def: A ring object in a Symmetric Monoidal Category is
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Ring Objects

Definition

Given a Symmetric Monoidal Category (C,⊗,1) we can talk about those objects A that
admit a multiplication structure.
Def: A ring object in a Symmetric Monoidal Category is an object A with maps:
• µ : A⊗A→ A (called the multiplication map)

• η : 1→ A (called the unit map)
such that the following diagrams commutes
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Ring Objects

Definition

Given a Symmetric Monoidal Category (C,⊗,1) we can talk about those objects A that
admit a multiplication structure.
Def: A ring object in a Symmetric Monoidal Category is an object A with maps:
• µ : A⊗A→ A (called the multiplication map)

• η : 1→ A (called the unit map)
such that the following diagrams commutes

A⊗A⊗A A⊗A A⊗ 1 A⊗A 1⊗A

A⊗A A A

µ⊗1

µ1⊗µ

µ

1⊗η η⊗1

µ
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Ring Objects

Definition

Given a Symmetric Monoidal Category (C,⊗,1) we can talk about those objects A that
admit a multiplication structure.
Def: A ring object in a Symmetric Monoidal Category is an object A with maps:
• µ : A⊗A→ A (called the multiplication map)

• η : 1→ A (called the unit map)
such that the following diagrams commutes

A⊗A⊗A A⊗A A⊗ 1 A⊗A 1⊗A

A⊗A A A

µ⊗1

µ1⊗µ

µ

1⊗η η⊗1

µ

We say the ring A is commutative if the multiplication map commutes with the braiding:
that is if µ ◦ τ = µ
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Examples of Ring Objects

In the Categories we Previously Mentioned

This is nothing more than the categorified version of a ring. To see that, consider:
• Ring objects in (Ab,⊗Z,Z) are nothing more than...

© David Rubinstein 23



Examples of Ring Objects

In the Categories we Previously Mentioned

This is nothing more than the categorified version of a ring. To see that, consider:
• Ring objects in (Ab,⊗Z,Z) are nothing more than Rings!

• More generally ring objects in (R−Mod,⊗R,R) are....

© David Rubinstein 24



Examples of Ring Objects

In the Categories we Previously Mentioned

This is nothing more than the categorified version of a ring. To see that, consider:
• Ring objects in (Ab,⊗Z,Z) are nothing more than Rings!

• More generally ring objects in (R−Mod,⊗R,R) are R-algebras!
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Examples of Ring Objects

In the Categories we Previously Mentioned

This is nothing more than the categorified version of a ring. To see that, consider:
• Ring objects in (Ab,⊗Z,Z) are nothing more than Rings!

• More generally ring objects in (R−Mod,⊗R,R) are R-algebras!

• For G finite Group, ring objects in (kG−Mod,⊗k,k) are k-algebras with actions of G
as algebra automorphisms.

• Recall a right adjoint G of any strong monoidal functor F is a lax monoidal functor.
Then we saw that in fact G(1) is a ring object.
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Modules over Ring objects

Given me a ring and I’ll give you a Module

Given a ring object we can talk about modules over the ring.
Def: Let A be a (commutative) ring object in a symetric monoidal category (C,⊗,1). A
left A-module M is an object of C equipped with a map ρ : A⊗M→M such that the
following two diagrams commute:
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Modules over Ring objects

Given me a ring and I’ll give you a Module

Given a ring object we can talk about modules over the ring.
Def: Let A be a (commutative) ring object in a symetric monoidal category (C,⊗,1). A
left A-module M is an object of C equipped with a map ρ : A⊗M→M such that the
following two diagrams commute:

A⊗A⊗M A⊗M 1⊗M A⊗M

A⊗M M M

1⊗ρ

ρµ⊗1

ρ

lM

η⊗1

ρ
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Modules over Ring objects

Given me a ring and I’ll give you a Module

Given a ring object we can talk about modules over the ring.
Def: Let A be a (commutative) ring object in a symetric monoidal category (C,⊗,1). A
left A-module M is an object of C equipped with a map ρ : A⊗M→M such that the
following two diagrams commute:

A⊗A⊗M A⊗M 1⊗M A⊗M

A⊗M M M

1⊗ρ

ρµ⊗1

ρ

lM

η⊗1

ρ

Remark: These axioms are just souped up versions of the usual two axioms that
a.(b.m)=(ab).m and 1.m=m we are familiar with for Modules.
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Modules over Ring objects

Category of Modules

Note that every object X ∈ C gives rise to a "free A-module" A⊗ Xwhose structure map is
given by the multiplication on A.
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Modules over Ring objects

Category of Modules

Note that every object X ∈ C gives rise to a "free A-module" A⊗ Xwhose structure map is
given by the multiplication on A.
Def: The category of A modules is denoted A−ModC and consists of

(Objects) A-modules

(Morphisms) A-linear maps. That is a map f :M→ N that commutes with the action
of A on M and N.
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Modules over Ring objects

Category of Modules

Note that every object X ∈ C gives rise to a "free A-module" A⊗ Xwhose structure map is
given by the multiplication on A.
Def: The category of A modules is denoted A−ModC and consists of

(Objects) A-modules

(Morphisms) A-linear maps. That is a map f :M→ N that commutes with the action
of A on M and N.

Note we then have an "extension of scalars functor"

FA := A⊗− : C → A−ModC

which has a right adjoint
UA : A−ModC → C

that forgets the action of A.
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Modules over Ring objects

Category of Modules

Note that every object X ∈ C gives rise to a "free A-module" A⊗ Xwhose structure map is
given by the multiplication on A.
Def: The category of A modules is denoted A−ModC and consists of

(Objects) A-modules

(Morphisms) A-linear maps. That is a map f :M→ N that commutes with the action
of A on M and N.

Note we then have an "extension of scalars functor"

FA := A⊗− : C → A−ModC

which has a right adjoint
UA : A−ModC → C

that forgets the action of A.
Remark: We typically call the essential image of F the category of "Free Modules" and
denote it by A− FreeC . The adjunction above then of course restricts to:

C

A− FreeC A−ModC

FA

UA FA

UA
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Realization of Ring Objects

Modules from an Adjunction

Let
C

D

F G

be an adjoint pair between (Symmetric) Monoidal Categories. Recall that if F is strong
Monoidal, then G is lax monoidal, turning A := G(1) into a ring object; so we can consider
the category of A-Modules in C.
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Realization of Ring Objects

Modules from an Adjunction

Let
C

D

F G

be an adjoint pair between (Symmetric) Monoidal Categories. Recall that if F is strong
Monoidal, then G is lax monoidal, turning A := G(1) into a ring object; so we can consider
the category of A-Modules in C.

Theorem:

There exist unique functors L and K making the following diagram commute:

C

A− FreeC D A−ModC

F G

L K

UA

FA

FA

UA
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Bring on the Triangulation

Tensor Triangulated Categories

Def: A Tensor Triangulated Category is a triangulated category T equiped with a
triangulated bi-functor −⊗− : T × T → T and unit object that turns T into a symmetric
monoidal category. We will often call a tensor triangulated category a tt. category and will
still denote it by (T ,⊗,1)
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Bring on the Triangulation

Tensor Triangulated Categories

Def: A Tensor Triangulated Category is a triangulated category T equiped with a
triangulated bi-functor −⊗− : T × T → T and unit object that turns T into a symmetric
monoidal category.We will often call a tensor triangulated category a tt. category and will
still denote it by (T ,⊗,1)
Let us consider some examples (compare these to the examples of (symmetric) monoidal
categories):

1. (D(R),⊗LR,R). The derived category of a commutative ring R with derived tensor
product.
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2. (Stab(kG),⊗k,k). The "stable module" category for the group ring kG.
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Bring on the Triangulation

Tensor Triangulated Categories

Def: A Tensor Triangulated Category is a triangulated category T equiped with a
triangulated bi-functor −⊗− : T × T → T and unit object that turns T into a symmetric
monoidal category.We will often call a tensor triangulated category a tt. category and will
still denote it by (T ,⊗,1)
Let us consider some examples (compare these to the examples of (symmetric) monoidal
categories):

1. (D(R),⊗LR,R). The derived category of a commutative ring R with derived tensor
product.

2. (Stab(kG),⊗k,k). The "stable module" category for the group ring kG.

3. (SH,∧,S). The "stable homotopy" category with smash product

4. (SH(G),∧,S). The G-equivarient stable homotopy category for a finite group G.
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Bring on the Triangulation

Tensor Triangulated Categories

Def: A Tensor Triangulated Category is a triangulated category T equiped with a
triangulated bi-functor −⊗− : T × T → T and unit object that turns T into a symmetric
monoidal category.We will often call a tensor triangulated category a tt. category and will
still denote it by (T ,⊗,1)
Let us consider some examples (compare these to the examples of (symmetric) monoidal
categories):

1. (D(R),⊗LR,R). The derived category of a commutative ring R with derived tensor
product.

2. (Stab(kG),⊗k,k). The "stable module" category for the group ring kG.

3. (SH,∧,S). The "stable homotopy" category with smash product

4. (SH(G),∧,S). The G-equivarient stable homotopy category for a finite group G.

5. (DM(ét)(S,R),⊗,R). The derived category of (étale) motives over base scheme S
with coefficients in a commutative ring R.
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Rings in TT Categories

Some leading questions/examples

Question: Let R be a commutative ring and let A be an R-algebra: Is A[0] a ring object in
D(R)?
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Rings in TT Categories

Some leading questions/examples

Question: Let R be a commutative ring and let A be an R-algebra: Is A[0] a ring object in
D(R)?
Answer: Sadly, not always. This is because (A⊗L A)[0] 6= A[0]⊗L A[0] unless A is flat. So
a flat R-Algebra A remains a ring object in D(R).
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Rings in TT Categories

Some leading questions/examples

Question 1: Let R be a commutative ring and let A be an R-algebra: Is A[0] a ring object in
D(R)?
Answer 1: Sadly, not always. This is because (A⊗L A)[0] 6= A[0]⊗L A[0] unless A is flat.
So a flat R-Algebra A remains a ring object in D(R).

Question 2: Let A be a ring object in a tt category T , and consider again the category of
A-modules A−ModT . Is A−ModT triangulated?
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Rings in TT Categories

Some leading questions/examples

Question 1: Let R be a commutative ring and let A be an R-algebra: Is A[0] a ring object in
D(R)?
Answer 1: Sadly, not always. This is because (A⊗L A)[0] 6= A[0]⊗L A[0] unless A is flat.
So a flat R-Algebra A remains a ring object in D(R).

Question 2: Let A be a ring object in a tt category T , and consider again the category of
A-modules A−ModT . Is A−ModT triangulated?
Answer 2: Sadly... not always.
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Separable Rings

Separability

Def: Let A be a ring object in a tt category T . We say that A is separable if the
multiplication map µ : A⊗A→ A admits a section as a two sided A-module.
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Separable Rings

Separability

Def: Let A be a ring object in a tt category T . We say that A is separable if the
multiplication map µ : A⊗A→ A admits a section as a two sided A-module. That is. a
morphism σ : A→ A⊗A such that µσ = idA and that the following diagram commutes:
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Separable Rings

Separability

Def: Let A be a ring object in a tt category T . We say that A is separable if the
multiplication map µ : A⊗A→ A admits a section as a two sided A-module. That is. a
morphism σ : A→ A⊗A such that µσ = idA and that the following diagram commutes:

A⊗A

A⊗A⊗A A A⊗A⊗A

A⊗A

µ

σ

σ⊗1

1⊗µ µ⊗1

1⊗σ

© David Rubinstein 47



Separable Rings

Separability

Def: Let A be a ring object in a tt category T . We say that A is separable if the
multiplication map µ : A⊗A→ A admits a section as a two sided A-module. That is. a
morphism σ : A→ A⊗A such that µσ = idA and that the following diagram commutes:

A⊗A

A⊗A⊗A A A⊗A⊗A

A⊗A

µ

σ

σ⊗1

1⊗µ µ⊗1

1⊗σ

Theorem:

Let A be a separable ring in a tt category T . Then the category A−ModT is canonically
triangulated such that the extension of scalars functor

FA : T → A−ModT

is a tt functor.

© David Rubinstein 48



Examples: Take 1

Smashing Localizations

Before diving into some concrete examples, let us note a particular case of this theory.
Let T be a tt category and consider a smashing localization L : T → T
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Examples: Take 1

Smashing Localizations

Before diving into some concrete examples, let us note a particular case of this theory.
Let T be a tt category and consider a smashing localization L : T → T Recall: A smashing
localization is a localization L such that

1. L admits a fully faithful right adjoint (allowing us to think of the localization as a
subcategory: the essential image of "L-local objects")
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Examples: Take 1

Smashing Localizations

Before diving into some concrete examples, let us note a particular case of this theory.
Let T be a tt category and consider a smashing localization L : T → T . Recall: A
smashing localization is a localization L such that

1. L admits a fully faithful right adjoint (allowing us to think of the localization as a
subcategory: the essential image of "L-local objects")

2. For any object t ∈ T , we have a canonical isomorphism L(t) ∼= L(1)⊗ t
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Examples: Take 1

Smashing Localizations

Before diving into some concrete examples, let us note a particular case of this theory.
Let T be a tt category and consider a smashing localization L : T → T . Recall: A
smashing localization is a localization L such that

1. L admits a fully faithful right adjoint (allowing us to think of the localization as a
subcategory: the essential image of "L-local objects")

2. For any object t ∈ T , we have a canonical isomorphism L(t) ∼= L(1)⊗ t
Then let us let A := L(1). One then shows that A⊗A ∼= A; this allows us to view A as a
separable algebra (by taking σ to be the inverse of the isomorphism.)
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Examples: Take 1

Smashing Localizations

Before diving into some concrete examples, let us note a particular case of this theory.
Let T be a tt category and consider a smashing localization L : T → T . Recall: A
smashing localization is a localization L such that

1. L admits a fully faithful right adjoint (allowing us to think of the localization as a
subcategory: the essential image of "L-local objects")

2. For any object t ∈ T , we have a canonical isomorphism L(t) ∼= L(1)⊗ t
Then let us let A := L(1). One then shows that A⊗A ∼= A; this allows us to view A as a
separable algebra (by taking σ to be the inverse of the isomorphism.)
In this case then, the category A−ModT is just the category of L-local objects.
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Examples: Take 1

Smashing Localizations

Before diving into some concrete examples, let us note a particular case of this theory.
Let T be a tt category and consider a smashing localization L : T → T . Recall: A
smashing localization is a localization L such that

1. L admits a fully faithful right adjoint (allowing us to think of the localization as a
subcategory: the essential image of "L-local objects")

2. For any object t ∈ T , we have a canonical isomorphism L(t) ∼= L(1)⊗ t
Then let us let A := L(1). One then shows that A⊗A ∼= A; this allows us to view A as a
separable algebra (by taking σ to be the inverse of the isomorphism.
In this case then, the category A−ModT is just the category of L-local objects.

Back to OG example

Remark: The case of the open immersion of schemes U ↪→ V can thus be stated as follows:
Letting A = j∗(OU) we have that A-Mod ∼= j∗j∗-Local objects ∼= Dqcoh(U).
That is, we can view Dqcoh(U) as being a sort of Module category inside Dqcoh(V)
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Finite Étale Extensions

The Main Construction

Let C D
F

G
be an adjunction of tt categories.
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Finite Étale Extensions

The Main Construction

Let C D
F

G
be an adjunction of tt categories. Then recall that A := G(1D) is a

ring object and that we had the following picture

C

A− FreeC D A−ModC

F G

L K

UA

FA

FA

UA

© David Rubinstein 56



Finite Étale Extensions

The Main Construction

Let C D
F

G
be an adjunction of tt categories. Then recall that A := G(1D) is a

ring object and that we had the following picture

C

A− FreeC D A−ModC

F G

L K

UA

FA

FA

UA

Main Definition:

Let F and A be as above. We say F is a finite étale extension if A is a (compact) separable
ring object such that

• the functor D K−→ A−ModC is an tt equivalence of tt categories

• under which the functor F becomes isomorphic to the extension of scalars functor FA
and

• G becomes isomorphic to the forgetful functor UA
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Étale Algebras Galore

The Reason for the Name

Recall that if A is a flat R-Algebra then A[0] remains a ring object in D(R).
Def: An étale R-Algebra S is a separable, flat R-algebra of finite presentation.
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Étale Algebras Galore

The Reason for the Name

Recall that if A is a flat R-Algebra then A[0] remains a ring object in D(R).
Def: An étale R-Algebra S is a separable, flat R-algebra of finite presentation.
Thrm 1: Let S be an étale R-algebra and consider the extension of scalars functor:

D(R)
F:=S[0]⊗L

R−
−−−−−−−−→ D(S)

Then F is a finite étale extension. That is the category D(S) is canonically equivalent to the
category of S-Modules inside D(R).
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Étale Algebras Galore

The Reason for the Name

Recall that if A is a flat R-Algebra then A[0] remains a ring object in D(R).
Def: An étale R-Algebra S is a separable, flat R-algebra of finite presentation.
Thrm 1: Let S be an étale R-algebra and consider the extension of scalars functor:

D(R)
F:=S[0]⊗L

R−
−−−−−−−−→ D(S)

Then F is a finite étale extension. That is the category D(S) is canonically equivalent to the
category of S-Modules inside D(R).

Thrm 2

Thrm 2: Let f : V → X be a seperated étale morphism of quasi-compact, quasi-seperated
schemes. Then the functor

f∗ : Dqcoh(X) → Dqcoh(V)

is a finite étale extension. That is, we have an equivalence of categories
Dqcoh(V) ∼= Rf∗(1) −ModDqcoh(X)
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Étale Extensions in Equivarient contexts

Modular Representation Theory

Let G be a finite group and consider the tt category Stab(kG). Let H 6 G be a subgroup
and recall that we get the following adjunction:
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Étale Extensions in Equivarient contexts

Modular Representation Theory

Let G be a finite group and consider the tt category Stab(kG). Let H 6 G be a subgroup
and recall that we get the following adjunction:

Stab(kG)

Stab(kH)

ResGH IndGH:=kG⊗−

© David Rubinstein 62



Étale Extensions in Equivarient contexts

Modular Representation Theory

Let G be a finite group and consider the tt category Stab(kG). Let H 6 G be a subgroup
and recall that we get the following adjunction:

Stab(kG)

Stab(kH)

ResGH IndGH:=kG⊗−

Thrm: Let AGH := IndGH(1)
∼= k(G/H). The Restriction to a subgroup functor is a finite

étale extension. That is, the category Stab(kH) is canonically isomorphic to the category of
A-Modules in Stab(kG) under which the restriction functor is isomorphic to the extension
of scalars functor FA.
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Étale Extensions in Equivarient contexts

Modular Representation Theory

Let G be a finite group and consider the tt category Stab(kG). Let H 6 G be a subgroup
and recall that we get the following adjunction:

Stab(kG)

Stab(kH)

ResGH IndGH:=kG⊗−

Thrm: Let AGH := IndGH(1)
∼= k(G/H). The Restriction to a subgroup functor is a finite

étale extension. That is, the category Stab(kH) is canonically isomorphic to the category of
A-Modules in Stab(kG) under which the restriction functor is isomorphic to the extension
of scalars functor FA.
Remark: One can then phrase questions about extending representations of H to G in
terms of "descent" of the ring AGH. I will not mention much more about this, but will leave
some references for you to look at. The big takeaway is that this ring AGH satisfies descent
iff [G : H] is invertible in k.
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Étale Extensions in Equivarient contexts

Equivariant Homotopy Theory

Let G be a compact Lie Group (ex; a finite group) and consider the tt category SH(G). Let
H 6 G be a closed subgroup- we get the following adjunction:
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Étale Extensions in Equivarient contexts

Equivariant Homotopy Theory

Let G be a compact Lie Group (ex; a finite group) and consider the tt category SH(G). Let
H 6 G be a closed subgroup- we get the following adjunction:

•

SH(G)

SH(H)

ResGH CoIndGH:=FH(G+ ,−)IndGH:=G+∧H−
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Étale Extensions in Equivarient contexts

Equivariant Homotopy Theory

Let G be a compact Lie Group (ex; a finite group) and consider the tt category SH(G). Let
H 6 G be a closed subgroup- we get the following adjunction:

SH(G)

SH(H)

ResGH CoIndGH:=FH(G+ ,−)IndGH:=G+∧H−

Note that when [G : H] <∞ there is an isomorphism of functors between
IndGH

∼= CoIndGH.
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Étale Extensions in Equivarient contexts

Equivariant Homotopy Theory

Let G be a compact Lie Group (ex; a finite group) and consider the tt category SH(G). Let
H 6 G be a closed subgroup- we get the following adjunction:

SH(G)

SH(H)

ResGH CoIndGH:=FH(G+ ,−)IndGH:=G+∧H−

Note that when [G : H] <∞ there is an isomorphism of functors between
IndGH

∼= CoIndGH.

Theorem:

Let H 6 G be a closed subgroup of finite index. Let
A := FH(G+,1SH(H)) ∼= G+ ∧H 1SH(H)

∼=
∑∞(G/H)+ Then restriction to H is a finite

étale extension; that is the category of A-Modules in SH(G) is equivalent to SH(H).
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Further Directions/Questions

Some Topics to Read if Interested

There are many directions one can take with this:
• Read about what the extension of scalars functor does on Spectra

• Classify all separable algebras in a given tt category

• Read about descent for separable algebras

• See how far you can push the analogy of a ring: going up theorem, "residue fields",
Galois extensions, etc

• Reading about the behavior of finite étale morphisms on the "big" categories
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